(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
table → gen(s(0))
gen(x) → if1(le(x, 10), x)
if1(false, x) → nil
if1(true, x) → if2(x, x)
if2(x, y) → if3(le(y, 10), x, y)
if3(true, x, y) → cons(entry(x, y, times(x, y)), if2(x, s(y)))
if3(false, x, y) → gen(s(x))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → plus(y, times(x, y))
10 → s(s(s(s(s(s(s(s(s(s(0))))))))))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
le(s(x), s(y)) →+ le(x, y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
table → gen(s(0'))
gen(x) → if1(le(x, 10'), x)
if1(false, x) → nil
if1(true, x) → if2(x, x)
if2(x, y) → if3(le(y, 10'), x, y)
if3(true, x, y) → cons(entry(x, y, times(x, y)), if2(x, s(y)))
if3(false, x, y) → gen(s(x))
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(x, y))
10' → s(s(s(s(s(s(s(s(s(s(0'))))))))))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
table → gen(s(0'))
gen(x) → if1(le(x, 10'), x)
if1(false, x) → nil
if1(true, x) → if2(x, x)
if2(x, y) → if3(le(y, 10'), x, y)
if3(true, x, y) → cons(entry(x, y, times(x, y)), if2(x, s(y)))
if3(false, x, y) → gen(s(x))
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(x, y))
10' → s(s(s(s(s(s(s(s(s(s(0'))))))))))
Types:
table :: nil:cons
gen :: 0':s → nil:cons
s :: 0':s → 0':s
0' :: 0':s
if1 :: false:true → 0':s → nil:cons
le :: 0':s → 0':s → false:true
10' :: 0':s
false :: false:true
nil :: nil:cons
true :: false:true
if2 :: 0':s → 0':s → nil:cons
if3 :: false:true → 0':s → 0':s → nil:cons
cons :: entry → nil:cons → nil:cons
entry :: 0':s → 0':s → 0':s → entry
times :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
hole_false:true3_0 :: false:true
hole_entry4_0 :: entry
gen_nil:cons5_0 :: Nat → nil:cons
gen_0':s6_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
gen,
le,
if2,
times,
plusThey will be analysed ascendingly in the following order:
le < gen
gen = if2
le < if2
times < if2
plus < times
(8) Obligation:
TRS:
Rules:
table →
gen(
s(
0'))
gen(
x) →
if1(
le(
x,
10'),
x)
if1(
false,
x) →
nilif1(
true,
x) →
if2(
x,
x)
if2(
x,
y) →
if3(
le(
y,
10'),
x,
y)
if3(
true,
x,
y) →
cons(
entry(
x,
y,
times(
x,
y)),
if2(
x,
s(
y)))
if3(
false,
x,
y) →
gen(
s(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
10' →
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
0'))))))))))
Types:
table :: nil:cons
gen :: 0':s → nil:cons
s :: 0':s → 0':s
0' :: 0':s
if1 :: false:true → 0':s → nil:cons
le :: 0':s → 0':s → false:true
10' :: 0':s
false :: false:true
nil :: nil:cons
true :: false:true
if2 :: 0':s → 0':s → nil:cons
if3 :: false:true → 0':s → 0':s → nil:cons
cons :: entry → nil:cons → nil:cons
entry :: 0':s → 0':s → 0':s → entry
times :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
hole_false:true3_0 :: false:true
hole_entry4_0 :: entry
gen_nil:cons5_0 :: Nat → nil:cons
gen_0':s6_0 :: Nat → 0':s
Generator Equations:
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(entry(0', 0', 0'), gen_nil:cons5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
The following defined symbols remain to be analysed:
le, gen, if2, times, plus
They will be analysed ascendingly in the following order:
le < gen
gen = if2
le < if2
times < if2
plus < times
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
le(
gen_0':s6_0(
n8_0),
gen_0':s6_0(
n8_0)) →
true, rt ∈ Ω(1 + n8
0)
Induction Base:
le(gen_0':s6_0(0), gen_0':s6_0(0)) →RΩ(1)
true
Induction Step:
le(gen_0':s6_0(+(n8_0, 1)), gen_0':s6_0(+(n8_0, 1))) →RΩ(1)
le(gen_0':s6_0(n8_0), gen_0':s6_0(n8_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
table →
gen(
s(
0'))
gen(
x) →
if1(
le(
x,
10'),
x)
if1(
false,
x) →
nilif1(
true,
x) →
if2(
x,
x)
if2(
x,
y) →
if3(
le(
y,
10'),
x,
y)
if3(
true,
x,
y) →
cons(
entry(
x,
y,
times(
x,
y)),
if2(
x,
s(
y)))
if3(
false,
x,
y) →
gen(
s(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
10' →
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
0'))))))))))
Types:
table :: nil:cons
gen :: 0':s → nil:cons
s :: 0':s → 0':s
0' :: 0':s
if1 :: false:true → 0':s → nil:cons
le :: 0':s → 0':s → false:true
10' :: 0':s
false :: false:true
nil :: nil:cons
true :: false:true
if2 :: 0':s → 0':s → nil:cons
if3 :: false:true → 0':s → 0':s → nil:cons
cons :: entry → nil:cons → nil:cons
entry :: 0':s → 0':s → 0':s → entry
times :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
hole_false:true3_0 :: false:true
hole_entry4_0 :: entry
gen_nil:cons5_0 :: Nat → nil:cons
gen_0':s6_0 :: Nat → 0':s
Lemmas:
le(gen_0':s6_0(n8_0), gen_0':s6_0(n8_0)) → true, rt ∈ Ω(1 + n80)
Generator Equations:
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(entry(0', 0', 0'), gen_nil:cons5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
The following defined symbols remain to be analysed:
plus, gen, if2, times
They will be analysed ascendingly in the following order:
gen = if2
times < if2
plus < times
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_0':s6_0(
n313_0),
gen_0':s6_0(
b)) →
gen_0':s6_0(
+(
n313_0,
b)), rt ∈ Ω(1 + n313
0)
Induction Base:
plus(gen_0':s6_0(0), gen_0':s6_0(b)) →RΩ(1)
gen_0':s6_0(b)
Induction Step:
plus(gen_0':s6_0(+(n313_0, 1)), gen_0':s6_0(b)) →RΩ(1)
s(plus(gen_0':s6_0(n313_0), gen_0':s6_0(b))) →IH
s(gen_0':s6_0(+(b, c314_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
table →
gen(
s(
0'))
gen(
x) →
if1(
le(
x,
10'),
x)
if1(
false,
x) →
nilif1(
true,
x) →
if2(
x,
x)
if2(
x,
y) →
if3(
le(
y,
10'),
x,
y)
if3(
true,
x,
y) →
cons(
entry(
x,
y,
times(
x,
y)),
if2(
x,
s(
y)))
if3(
false,
x,
y) →
gen(
s(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
10' →
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
0'))))))))))
Types:
table :: nil:cons
gen :: 0':s → nil:cons
s :: 0':s → 0':s
0' :: 0':s
if1 :: false:true → 0':s → nil:cons
le :: 0':s → 0':s → false:true
10' :: 0':s
false :: false:true
nil :: nil:cons
true :: false:true
if2 :: 0':s → 0':s → nil:cons
if3 :: false:true → 0':s → 0':s → nil:cons
cons :: entry → nil:cons → nil:cons
entry :: 0':s → 0':s → 0':s → entry
times :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
hole_false:true3_0 :: false:true
hole_entry4_0 :: entry
gen_nil:cons5_0 :: Nat → nil:cons
gen_0':s6_0 :: Nat → 0':s
Lemmas:
le(gen_0':s6_0(n8_0), gen_0':s6_0(n8_0)) → true, rt ∈ Ω(1 + n80)
plus(gen_0':s6_0(n313_0), gen_0':s6_0(b)) → gen_0':s6_0(+(n313_0, b)), rt ∈ Ω(1 + n3130)
Generator Equations:
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(entry(0', 0', 0'), gen_nil:cons5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
The following defined symbols remain to be analysed:
times, gen, if2
They will be analysed ascendingly in the following order:
gen = if2
times < if2
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
times(
gen_0':s6_0(
n1130_0),
gen_0':s6_0(
b)) →
gen_0':s6_0(
*(
n1130_0,
b)), rt ∈ Ω(1 + b·n1130
0 + n1130
0)
Induction Base:
times(gen_0':s6_0(0), gen_0':s6_0(b)) →RΩ(1)
0'
Induction Step:
times(gen_0':s6_0(+(n1130_0, 1)), gen_0':s6_0(b)) →RΩ(1)
plus(gen_0':s6_0(b), times(gen_0':s6_0(n1130_0), gen_0':s6_0(b))) →IH
plus(gen_0':s6_0(b), gen_0':s6_0(*(c1131_0, b))) →LΩ(1 + b)
gen_0':s6_0(+(b, *(n1130_0, b)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
table →
gen(
s(
0'))
gen(
x) →
if1(
le(
x,
10'),
x)
if1(
false,
x) →
nilif1(
true,
x) →
if2(
x,
x)
if2(
x,
y) →
if3(
le(
y,
10'),
x,
y)
if3(
true,
x,
y) →
cons(
entry(
x,
y,
times(
x,
y)),
if2(
x,
s(
y)))
if3(
false,
x,
y) →
gen(
s(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
10' →
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
0'))))))))))
Types:
table :: nil:cons
gen :: 0':s → nil:cons
s :: 0':s → 0':s
0' :: 0':s
if1 :: false:true → 0':s → nil:cons
le :: 0':s → 0':s → false:true
10' :: 0':s
false :: false:true
nil :: nil:cons
true :: false:true
if2 :: 0':s → 0':s → nil:cons
if3 :: false:true → 0':s → 0':s → nil:cons
cons :: entry → nil:cons → nil:cons
entry :: 0':s → 0':s → 0':s → entry
times :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
hole_false:true3_0 :: false:true
hole_entry4_0 :: entry
gen_nil:cons5_0 :: Nat → nil:cons
gen_0':s6_0 :: Nat → 0':s
Lemmas:
le(gen_0':s6_0(n8_0), gen_0':s6_0(n8_0)) → true, rt ∈ Ω(1 + n80)
plus(gen_0':s6_0(n313_0), gen_0':s6_0(b)) → gen_0':s6_0(+(n313_0, b)), rt ∈ Ω(1 + n3130)
times(gen_0':s6_0(n1130_0), gen_0':s6_0(b)) → gen_0':s6_0(*(n1130_0, b)), rt ∈ Ω(1 + b·n11300 + n11300)
Generator Equations:
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(entry(0', 0', 0'), gen_nil:cons5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
The following defined symbols remain to be analysed:
if2, gen
They will be analysed ascendingly in the following order:
gen = if2
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol if2.
(19) Obligation:
TRS:
Rules:
table →
gen(
s(
0'))
gen(
x) →
if1(
le(
x,
10'),
x)
if1(
false,
x) →
nilif1(
true,
x) →
if2(
x,
x)
if2(
x,
y) →
if3(
le(
y,
10'),
x,
y)
if3(
true,
x,
y) →
cons(
entry(
x,
y,
times(
x,
y)),
if2(
x,
s(
y)))
if3(
false,
x,
y) →
gen(
s(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
10' →
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
0'))))))))))
Types:
table :: nil:cons
gen :: 0':s → nil:cons
s :: 0':s → 0':s
0' :: 0':s
if1 :: false:true → 0':s → nil:cons
le :: 0':s → 0':s → false:true
10' :: 0':s
false :: false:true
nil :: nil:cons
true :: false:true
if2 :: 0':s → 0':s → nil:cons
if3 :: false:true → 0':s → 0':s → nil:cons
cons :: entry → nil:cons → nil:cons
entry :: 0':s → 0':s → 0':s → entry
times :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
hole_false:true3_0 :: false:true
hole_entry4_0 :: entry
gen_nil:cons5_0 :: Nat → nil:cons
gen_0':s6_0 :: Nat → 0':s
Lemmas:
le(gen_0':s6_0(n8_0), gen_0':s6_0(n8_0)) → true, rt ∈ Ω(1 + n80)
plus(gen_0':s6_0(n313_0), gen_0':s6_0(b)) → gen_0':s6_0(+(n313_0, b)), rt ∈ Ω(1 + n3130)
times(gen_0':s6_0(n1130_0), gen_0':s6_0(b)) → gen_0':s6_0(*(n1130_0, b)), rt ∈ Ω(1 + b·n11300 + n11300)
Generator Equations:
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(entry(0', 0', 0'), gen_nil:cons5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
The following defined symbols remain to be analysed:
gen
They will be analysed ascendingly in the following order:
gen = if2
(20) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol gen.
(21) Obligation:
TRS:
Rules:
table →
gen(
s(
0'))
gen(
x) →
if1(
le(
x,
10'),
x)
if1(
false,
x) →
nilif1(
true,
x) →
if2(
x,
x)
if2(
x,
y) →
if3(
le(
y,
10'),
x,
y)
if3(
true,
x,
y) →
cons(
entry(
x,
y,
times(
x,
y)),
if2(
x,
s(
y)))
if3(
false,
x,
y) →
gen(
s(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
10' →
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
0'))))))))))
Types:
table :: nil:cons
gen :: 0':s → nil:cons
s :: 0':s → 0':s
0' :: 0':s
if1 :: false:true → 0':s → nil:cons
le :: 0':s → 0':s → false:true
10' :: 0':s
false :: false:true
nil :: nil:cons
true :: false:true
if2 :: 0':s → 0':s → nil:cons
if3 :: false:true → 0':s → 0':s → nil:cons
cons :: entry → nil:cons → nil:cons
entry :: 0':s → 0':s → 0':s → entry
times :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
hole_false:true3_0 :: false:true
hole_entry4_0 :: entry
gen_nil:cons5_0 :: Nat → nil:cons
gen_0':s6_0 :: Nat → 0':s
Lemmas:
le(gen_0':s6_0(n8_0), gen_0':s6_0(n8_0)) → true, rt ∈ Ω(1 + n80)
plus(gen_0':s6_0(n313_0), gen_0':s6_0(b)) → gen_0':s6_0(+(n313_0, b)), rt ∈ Ω(1 + n3130)
times(gen_0':s6_0(n1130_0), gen_0':s6_0(b)) → gen_0':s6_0(*(n1130_0, b)), rt ∈ Ω(1 + b·n11300 + n11300)
Generator Equations:
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(entry(0', 0', 0'), gen_nil:cons5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
No more defined symbols left to analyse.
(22) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s6_0(n1130_0), gen_0':s6_0(b)) → gen_0':s6_0(*(n1130_0, b)), rt ∈ Ω(1 + b·n11300 + n11300)
(23) BOUNDS(n^2, INF)
(24) Obligation:
TRS:
Rules:
table →
gen(
s(
0'))
gen(
x) →
if1(
le(
x,
10'),
x)
if1(
false,
x) →
nilif1(
true,
x) →
if2(
x,
x)
if2(
x,
y) →
if3(
le(
y,
10'),
x,
y)
if3(
true,
x,
y) →
cons(
entry(
x,
y,
times(
x,
y)),
if2(
x,
s(
y)))
if3(
false,
x,
y) →
gen(
s(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
10' →
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
0'))))))))))
Types:
table :: nil:cons
gen :: 0':s → nil:cons
s :: 0':s → 0':s
0' :: 0':s
if1 :: false:true → 0':s → nil:cons
le :: 0':s → 0':s → false:true
10' :: 0':s
false :: false:true
nil :: nil:cons
true :: false:true
if2 :: 0':s → 0':s → nil:cons
if3 :: false:true → 0':s → 0':s → nil:cons
cons :: entry → nil:cons → nil:cons
entry :: 0':s → 0':s → 0':s → entry
times :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
hole_false:true3_0 :: false:true
hole_entry4_0 :: entry
gen_nil:cons5_0 :: Nat → nil:cons
gen_0':s6_0 :: Nat → 0':s
Lemmas:
le(gen_0':s6_0(n8_0), gen_0':s6_0(n8_0)) → true, rt ∈ Ω(1 + n80)
plus(gen_0':s6_0(n313_0), gen_0':s6_0(b)) → gen_0':s6_0(+(n313_0, b)), rt ∈ Ω(1 + n3130)
times(gen_0':s6_0(n1130_0), gen_0':s6_0(b)) → gen_0':s6_0(*(n1130_0, b)), rt ∈ Ω(1 + b·n11300 + n11300)
Generator Equations:
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(entry(0', 0', 0'), gen_nil:cons5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s6_0(n1130_0), gen_0':s6_0(b)) → gen_0':s6_0(*(n1130_0, b)), rt ∈ Ω(1 + b·n11300 + n11300)
(26) BOUNDS(n^2, INF)
(27) Obligation:
TRS:
Rules:
table →
gen(
s(
0'))
gen(
x) →
if1(
le(
x,
10'),
x)
if1(
false,
x) →
nilif1(
true,
x) →
if2(
x,
x)
if2(
x,
y) →
if3(
le(
y,
10'),
x,
y)
if3(
true,
x,
y) →
cons(
entry(
x,
y,
times(
x,
y)),
if2(
x,
s(
y)))
if3(
false,
x,
y) →
gen(
s(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
10' →
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
0'))))))))))
Types:
table :: nil:cons
gen :: 0':s → nil:cons
s :: 0':s → 0':s
0' :: 0':s
if1 :: false:true → 0':s → nil:cons
le :: 0':s → 0':s → false:true
10' :: 0':s
false :: false:true
nil :: nil:cons
true :: false:true
if2 :: 0':s → 0':s → nil:cons
if3 :: false:true → 0':s → 0':s → nil:cons
cons :: entry → nil:cons → nil:cons
entry :: 0':s → 0':s → 0':s → entry
times :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
hole_false:true3_0 :: false:true
hole_entry4_0 :: entry
gen_nil:cons5_0 :: Nat → nil:cons
gen_0':s6_0 :: Nat → 0':s
Lemmas:
le(gen_0':s6_0(n8_0), gen_0':s6_0(n8_0)) → true, rt ∈ Ω(1 + n80)
plus(gen_0':s6_0(n313_0), gen_0':s6_0(b)) → gen_0':s6_0(+(n313_0, b)), rt ∈ Ω(1 + n3130)
Generator Equations:
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(entry(0', 0', 0'), gen_nil:cons5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
No more defined symbols left to analyse.
(28) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s6_0(n8_0), gen_0':s6_0(n8_0)) → true, rt ∈ Ω(1 + n80)
(29) BOUNDS(n^1, INF)
(30) Obligation:
TRS:
Rules:
table →
gen(
s(
0'))
gen(
x) →
if1(
le(
x,
10'),
x)
if1(
false,
x) →
nilif1(
true,
x) →
if2(
x,
x)
if2(
x,
y) →
if3(
le(
y,
10'),
x,
y)
if3(
true,
x,
y) →
cons(
entry(
x,
y,
times(
x,
y)),
if2(
x,
s(
y)))
if3(
false,
x,
y) →
gen(
s(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
plus(
y,
times(
x,
y))
10' →
s(
s(
s(
s(
s(
s(
s(
s(
s(
s(
0'))))))))))
Types:
table :: nil:cons
gen :: 0':s → nil:cons
s :: 0':s → 0':s
0' :: 0':s
if1 :: false:true → 0':s → nil:cons
le :: 0':s → 0':s → false:true
10' :: 0':s
false :: false:true
nil :: nil:cons
true :: false:true
if2 :: 0':s → 0':s → nil:cons
if3 :: false:true → 0':s → 0':s → nil:cons
cons :: entry → nil:cons → nil:cons
entry :: 0':s → 0':s → 0':s → entry
times :: 0':s → 0':s → 0':s
plus :: 0':s → 0':s → 0':s
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
hole_false:true3_0 :: false:true
hole_entry4_0 :: entry
gen_nil:cons5_0 :: Nat → nil:cons
gen_0':s6_0 :: Nat → 0':s
Lemmas:
le(gen_0':s6_0(n8_0), gen_0':s6_0(n8_0)) → true, rt ∈ Ω(1 + n80)
Generator Equations:
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(entry(0', 0', 0'), gen_nil:cons5_0(x))
gen_0':s6_0(0) ⇔ 0'
gen_0':s6_0(+(x, 1)) ⇔ s(gen_0':s6_0(x))
No more defined symbols left to analyse.
(31) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s6_0(n8_0), gen_0':s6_0(n8_0)) → true, rt ∈ Ω(1 + n80)
(32) BOUNDS(n^1, INF)